Object detection based on machine learning combined with physical attributes and movement patterns detection
Abstract:
Presented herein are systems and methods for increasing reliability of object detection, comprising, receiving a plurality of images of one or more objects captured by imaging sensor(s), receiving an object classification coupled with a first probability score from machine learning model(s) trained to detect the object(s) and applied to the image(s), computing a second probability score for classification of the object(s) according to physical attribute(s) of the object(s) estimated by analyzing the image(s), computing a third probability score for classification of the object(s) according to a movement pattern of the object(s) estimated by analyzing at least some consecutive images, computing an aggregated probability score aggregating the first, second and third probability scores, and outputting, in case the aggregated probability score exceeds a certain threshold, the classification of each object coupled with the aggregated probability score for use by object detection based system(s).
Information query
Patent Agency Ranking
0/0