Incremental time window procedure for selecting training samples for a supervised learning algorithm
Abstract:
Disclosed herein are system, method, and computer program product embodiments for generating labels for training a machine learning mode using an incremental time window process. The described process may be used in a recurrence detection system. A dataset may be analyzed using incremental split dates to divide the dataset into an analysis portion and a holdout portion. The analysis portion may be analyzed to determine input features related to a predicted recurrence in the dataset. The holdout portion may be tested against the analysis portion and the input features to generate a label. The label may indicate whether or not the holdout portion confirms the prediction. The testing of the holdout portion against the analysis portion may be repeated by incrementally using different split dates and multiple separate analysis portions and holdout portions to generate multiple labels and corresponding input features.
Information query
Patent Agency Ranking
0/0