Fusing deep learning and geometric constraint for image-based localization
Abstract:
A computer-implemented method, comprising applying training images of an environment divided into zones to a neural network, and performing classification to label a test image based on a closest zone of the zones; extracting a feature from retrieved training images and pose information of the test image that match the closest zone; performing bundle adjustment on the extracted feature by triangulating map points for the closest zone to generate a reprojection error, and minimizing the reprojection error to determine an optimal pose of the test image; and for the optimal pose, providing an output indicative of a location or probability of a location of the test image at the optimal pose within the environment.
Information query
Patent Agency Ranking
0/0