Sparse video inference processor for action classification and motion tracking
Abstract:
A sparse video inference chip is designed to extract spatio-temporal features from videos for action classification and motion tracking. The core is a sparse video inference processor that implements recurrent neural network in three layers of processing. High sparsity is enforced in each layer of processing, reducing the complexity by two orders of magnitude and allowing all multiply-accumulates (MAC) to be replaced by select-accumulates (SA). The design is demonstrated in a 3.98 mm2 40 nm CMOS chip with an Open-RISC processor providing software-defined control and classification.
Information query
Patent Agency Ranking
0/0