Systems and methods for document image analysis with cardinal graph convolutional networks
Abstract:
Systems and methods for processing documents based on a cardinal graph convolution network by generating cardinal graph representations representing words as single nodes with edges connected between neighbouring nodes in four cardinal directions. Features tensors are generated for nodes of the cardinal graph representation and the cardinal directions are encoded to generate an adjacency tensor having node neighbour indices. Entries of the adjacency tensor are transformed into a one-hot encoding of the node neighbour indices. Neighbourhood feature tensors are created over node indices and the features in each block may be scaled, convolved and reduced into new feature tensors.
Information query
Patent Agency Ranking
0/0