Inferring consumer affinities based on shopping behaviors with unsupervised machine learning models
Abstract:
Provided is a process of discovering psychographic segments of consumers with unsupervised machine learning, the process including: obtaining a first set of consumer-behavior records; converting the first set of consumer-behavior records into respective consumer-behavior vectors; determining psychographic segments of consumers by training an unsupervised machine learning model with the first set of consumer-behavior vectors; obtaining a second set of consumer-behavior records after determining the psychographic segments of consumers; converting the second set of consumer-behavior records into respective consumer-behavior vectors; classifying the second set of consumer-behavior vectors as each belonging to at least a respective one of psychographic segments with the trained machine learning model; and predicting based on the classification a likelihood of the respective consumer engaging in behavior associated with a corresponding one of the psychographic segments.
Information query
Patent Agency Ranking
0/0