Method of stripping strong reflection layer based on deep learning
Abstract:
Disclosed herein is a method of stripping a strong reflection layer based on deep learning. The method establishes a direct mapping relationship between a strong reflection signal and seismic data of a target work area through a nonlinear mapping function of the deep neural network, and strips a strong reflection layer after the strong layer is accurately predicted. A mapping relationship between the seismic data containing the strong reflection layer and an event of the strong reflection layer is directedly found through training parameters. In addition, this method does not require an empirical parameter adjustment, and only needs to prepare a training sample that meets the actual conditions of the target work area according to the described rules.
Public/Granted literature
Information query
Patent Agency Ranking
0/0