Streaming contextual unidirectional models
Abstract:
Streaming machine learning unidirectional models is facilitated by the use of embedding vectors. Processing blocks in the models apply embedding vectors as input. The embedding vectors utilize context of future data (e.g., data that is temporally offset into the future within a data stream) to improve the accuracy of the outputs generated by the processing blocks. The embedding vectors cause a temporal shift between the outputs of the processing blocks and the inputs to which the outputs correspond. This temporal shift enables the processing blocks to apply the embedding vector inputs from processing blocks that are associated with future data.
Public/Granted literature
Information query
Patent Agency Ranking
0/0