Deep Q-network reinforcement learning for testing case selection and prioritization
Abstract:
Systems and methods for automated software test design and implementation. The system and method being able to establish an initial pool of test cases for testing computer code; apply the initial pool of test cases to the computer code in a testing environment to generate test results; preprocess the test results into a predetermined format; extract metadata from the test results; generate a training sequence; calculate a reward value for the pool of test cases; input the training sequence and reward value into a reinforcement learning agent; utilizing the value output from the reinforcement learning agent to produce a ranking list; prioritizing the initial pool of test cases and one or more new test cases based on the ranking list; and applying the prioritized initial pool of test cases and one or more new test cases to the computer code in a testing environment to generate test results.
Information query
Patent Agency Ranking
0/0