Robots with dynamically controlled position of center of mass
Abstract:
Dynamic control of a center of mass position is based on replacement of discrete motion of macro body (counterweighing solid or counterbalancing mechanisms) for continuous molecular flow of counterweighing liquid. Redistributing liquid counterweight between chambers attached to independently moving parts of robot allows its motion to new stable position without disruption in static stability and dynamic balance. Various embodiments include bipods/humanoids, wheeled locomotion robots and hybrid wheeled/multi-pod bio-like robotic systems; some embodiments allow reversible mutual reconfiguration between various structural arrangements. In humanoid embodiments, method allows moving on uneven terrain or ascending staircases while maintaining static stability; method also decreases the probability of fall and secures self-rising if a fall occurred. In some embodiments liquid counterweight may be transferred upon high barriers exceeding the height of robot by a few folds, such as walls of the building or ledge or steep slope in mountains, thus providing robots with capability principally not available to prior art.
Public/Granted literature
Information query
Patent Agency Ranking
0/0