Circuit arrangement and method for the digital correction of modulation effects in electromechanical delta-sigma modulators
Abstract:
The present invention relates to a circuit arrangement and a method for reading a capacitive vibratory gyroscope with an at least primary mass and at least one secondary mass that is connected to the primary mass, wherein the primary mass is excited to a primary vibration during operation, and wherein the secondary mass is deflected out of a resting position in a direction that is transversal to the primary vibration when the vibratory gyro-scope rotates around a sensitive axis. The circuit arrangement comprises a delta-sigma modulator with at least one control loop to perform a force feedback that resets the secondary mass into its resting state by applying a reset signal, wherein the reset signal forms a modulator output signal of the delta-sigma modulator, a correction unit that receives the modulator output signal and that is operated to generate a corrected modulator output signal that corresponds to an actually acting feedback force, a demodulator that is connected to the correction unit for demodulation of the corrected modulator output signal, and a filter arrangement to filter the demodulated signals and to output a rotary rate signal.
Information query
Patent Agency Ranking
0/0