Method and apparatus for learning low-precision neural network that combines weight quantization and activation quantization
Abstract:
A method is provided. The method includes selecting a neural network model, wherein the neural network model includes a plurality of layers, and wherein each of the plurality of layers includes weights and activations; modifying the neural network model by inserting a plurality of quantization layers within the neural network model; associating a cost function with the modified neural network model, wherein the cost function includes a first coefficient corresponding to a first regularization term, and wherein an initial value of the first coefficient is pre-defined; and training the modified neural network model to generate quantized weights for a layer by increasing the first coefficient until all weights are quantized and the first coefficient satisfies a pre-defined threshold, further including optimizing a weight scaling factor for the quantized weights and an activation scaling factor for quantized activations, and wherein the quantized weights are quantized using the optimized weight scaling factor.
Information query
Patent Agency Ranking
0/0