Bug categorization and team boundary inference via automated bug detection
Abstract:
A machine learning model can be trained to infer the probability of the presence of categories of a software bug in a source code file. A bug tracker can provide information concerning the category to which a software bug belongs. The bug data supplied to a machine learning model for inferring the presence of particular categories of bugs can be filtered to exclude a specified category or categories of bugs. Information including but not limited to organizational boundaries can be inferred from the category of bugs present in a body of source code. The inferred organization boundaries can be used to generate team-specific machine learning models.
Information query
Patent Agency Ranking
0/0