Method and system for deep convolutional neural net for artifact suppression in dense MRI
Abstract:
Suppressing artifacts in MRI image acquisition data includes alternatives to phase cycling by using a Convolutional Neural Network to suppress the artifact-generating echos. A U-NET CNN is trained using phase-cycled artifact-free images for ground truth comparison with received displacement encoded stimulated echo (DENSE) images. The DENSE images include data from a single acquisition with both stimulated (STE) and T1-relaxation echoes. The systems and methods of this disclosure are explained as generating artifact-free images in the ultimate output and avoiding the additional data acquisition needed for phase cycling and shortens the scan time in DENSE MRI.
Information query
Patent Agency Ranking
0/0