Ensemble risk assessment method for networked devices
Abstract:
A management entity receives device fingerprints representing corresponding devices connected to one or more networks. Each device fingerprint includes a multi-bit word indicating hardware, software, network configuration, and failure features for a corresponding one of the devices. The management entity processes the device fingerprints using different methods including statistical risk of failure scoring methods and machine learning risk of failure scoring methods, to produce from each of the methods a respective risk of failure for each device. The management entity combines the respective risk of failures for each device into a composite risk of failure for each device, ranks the devices based on the composite risk of failures for the devices, to produce a risk ranking of the devices, and outputs the risk ranking.
Public/Granted literature
Information query
Patent Agency Ranking
0/0