Machine learning for somatic single nucleotide variant detection in cell-free tumor nucleic acid sequencing applications
Abstract:
Systems and methods are disclosed to detect single-nucleotide variations (SNVs) from somatic sources in a cell-free biological sample of a subject by generating training data with class labels; in computer memory, generating a machine learning unit comprising one output for each of adenine (A), cytosine (C), guanine (G), and thymine (T) calls; training the machine learning unit; and applying the machine learning unit to detect the SNVs from somatic sources in the cell-free biological sample of the subject, wherein the cell-free biological sample comprises a mixture of nucleic acid molecules from somatic and germline sources.
Information query
Patent Agency Ranking
0/0