Support vector machine prediction system
Abstract:
A computer system selects a kernel and kernel parameters for a first Support Vector Machine (SVM) model, testing the SVM model on a feature matrix T of n feature vectors of length m to produce false positive (FP) data set and false negative (FN) data set by a computer processor, wherein n and m are integer numbers, copies the feature matrix T to produce a feature matrix T_best, and checking if a ratio (T_best sample number)/(SVM support vector number) is above a threshold for the SVM model on T_best. If the ratio is above the threshold, SVM predictions are performed using the SVM model on the feature matrix T_best. The first SVM model can be used classify the faces or the objects in the images. An image-product design can be created based on the faces or the objects in the images classified by the first SVM model using the feature matrix T_best.
Public/Granted literature
Information query
Patent Agency Ranking
0/0