Training a generative model and a discriminative model
Abstract:
A system for training a generative model and a discriminative model. The generative model generates synthetic instances from latent feature vectors by generating an intermediate representation from the latent feature vector and generating the synthetic instance from the intermediate representation. The discriminative model determines multiple discriminator scores for multiple parts of an input instance, indicating whether the part is from a synthetic instance or an actual instance. The generative model is trained by backpropagation. During the backpropagation, partial derivatives of the loss with respect to entries of the intermediate representation are updated based on a discriminator score for a part of the synthetic instance, wherein the part of the synthetic instance is generated based at least in part on the entry of the intermediate representation, and wherein the partial derivative is decreased in value if the discriminator score indicates an actual instance.
Public/Granted literature
Information query
Patent Agency Ranking
0/0