Distributed attitude control system for reconfigurable spacecraft composed of joined entities with compliant coupling
Abstract:
A process to design an attitude control system (ACS) controller in each of a plurality of joined entities includes identifying a worst case configuration as a design-to configuration as one or more configurations in a given set S of configurations required for a spacecraft. For the design-to configuration, the process includes deriving one or more system equations in a functional form of equations to determine intermediate design parameters that represent effective proportional and derivative gains of the combined controller, Kp and Kd, respectively. The process also includes determining the design parameters of the ACS controller, namely, gains Kq and Kω and stiffness and damping coefficients, Ks and Cd respectively of all the interfaces between each of the plurality of joined entities, from the intermediate design parameters Kp and Kd. The process further includes programming the ACS controller with selected values of the design parameters for matrices Kq and Kω and selecting springs with stiffness Ks and dampers with damping coefficient Cd for all interfaces between each of the plurality of joined entities. The process includes iterating the computer-implemented process after incrementing a convergence requirement parameter σthreshold when the control performance is not acceptable and until the system achieves acceptable performance, and programming the ACS controller for each of the plurality of joined entities.
Information query
Patent Agency Ranking
0/0