Hybrid model for short text classification with imbalanced data
Abstract:
A method of text classification includes generating a text embedding vector representing a text sample and applying weights of a regression layer to the text embedding vector to generate a first data model output vector. The method also includes generating a plurality of prototype embedding vectors associated with a respective classification labels and comparing the plurality of prototype embedding vectors to the text embedding vector to generate a second data model output vector. The method further includes assigning a particular classification label to the text sample based on the first data model output vector, the second data model output vector, and one or more weighting values.
Public/Granted literature
Information query
Patent Agency Ranking
0/0