Online incremental machine learning clustering in anti-money laundering detection
Abstract:
A computerized-method for real-time detection of financial transactions suspicious for money-laundering, by processing high-speed streaming financial data. In a computerized-system receiving a financial data stream comprised of data points. Operating a Fused-Density (FD)-based clustering module that is configured to: (i) read the data points; (ii) maintain a grid system; (iii) maintain one or more provisional clusters (PROC)s; (iv) associate each data point with a grid or merge it to a PROC; (v) systemize the grid system and the PROCs; (vi) trim one or more grids and remove one or more PROCs; (vii) form one or more shape devise clusters based on the PROCs; and (viii) transmit the one or more shape devise clusters for analysis thereof, thus, enabling detection of financial transactions suspicious for money-laundering according to the one or more shape devise clusters which were formed out of the high-speed streaming financial data with money-laundering changing trends.
Information query
Patent Agency Ranking
0/0