Invention Grant
- Patent Title: Multi-objective real-time power flow control method using soft actor-critic
-
Application No.: US17092478Application Date: 2020-11-09
-
Publication No.: US11336092B2Publication Date: 2022-05-17
- Inventor: Ruisheng Diao , Di Shi , Bei Zhang , Siqi Wang , Haifeng Li , Chunlei Xu , Desong Bian , Jiajun Duan , Haiwei Wu
- Applicant: Ruisheng Diao , Di Shi , Bei Zhang , Siqi Wang , Haifeng Li , Chunlei Xu , Desong Bian , Jiajun Duan , Haiwei Wu
- Applicant Address: US WA Richland; US CA San Jose; US CA San Jose; US CA San Jose; CN Nanjing; CN Nanjing; US CA San Jose; US CA San Jose; CN Nanjing
- Assignee: Ruisheng Diao,Di Shi,Bei Zhang,Siqi Wang,Haifeng Li,Chunlei Xu,Desong Bian,Jiajun Duan,Haiwei Wu
- Current Assignee: Ruisheng Diao,Di Shi,Bei Zhang,Siqi Wang,Haifeng Li,Chunlei Xu,Desong Bian,Jiajun Duan,Haiwei Wu
- Current Assignee Address: US WA Richland; US CA San Jose; US CA San Jose; US CA San Jose; CN Nanjing; CN Nanjing; US CA San Jose; US CA San Jose; CN Nanjing
- Agency: Patent PC
- Agent Bao Tran
- Main IPC: H02J3/00
- IPC: H02J3/00 ; G05B13/04 ; G05B13/02

Abstract:
Systems and methods are disclosed for control voltage profiles, line flows and transmission losses of a power grid by forming an autonomous multi-objective control model with one or more neural networks as a Deep Reinforcement Learning (DRL) agent; training the DRL agent to provide data-driven, real-time and autonomous grid control strategies; and coordinating and optimizing power controllers to regulate voltage profiles, line flows and transmission losses in the power grid with a Markov decision process (MDP) operating with reinforcement learning to control problems in dynamic and stochastic environments.
Public/Granted literature
- US20210367424A1 Multi-Objective Real-time Power Flow Control Method Using Soft Actor-Critic Public/Granted day:2021-11-25
Information query