Classifying images in overlapping groups of images using convolutional neural networks
Abstract:
The present disclosure relates to training a machine learning model to classify images. An example method generally includes receiving a training data set including images in a first category and images in a second category. A convolutional neural network (CNN) is trained using the training data set, and a feature map is generated from layers of the CNN based on features of images in the training data set. A first area in the feature map including images in the first category and a second area in the feature map where images in the first category overlap with images in the second category are identified. The first category is split into a first subcategory corresponding to the first area and a second subcategory corresponding to the second area. The CNN is retrained based on the images in the first subcategory, images in the second subcategory, and images in the second category.
Information query
Patent Agency Ranking
0/0