Invention Grant
- Patent Title: Contextually generated perceptions
-
Application No.: US16263326Application Date: 2019-01-31
-
Publication No.: US11354351B2Publication Date: 2022-06-07
- Inventor: Hakan Robert Gultekin , Emrah Gultekin
- Applicant: Chooch Intelligence Technologies Co.
- Applicant Address: US CA San Francisco
- Assignee: Chooch Intelligence Technologies Co.
- Current Assignee: Chooch Intelligence Technologies Co.
- Current Assignee Address: US CA San Francisco
- Agency: Klintworth & Rozenblat IP LLP
- Main IPC: G06F16/583
- IPC: G06F16/583 ; G06F16/55 ; G06V20/40 ; G06N20/00

Abstract:
Embodiments of the present invention train multiple Perception models to predict contextual metadata (tags) with respect to target content items. By extracting context from content items, and generating associations among the Perception models, individual Perceptions trigger one another based on the extracted context to generate a more robust set of contextual metadata. A Perception Identifier predicts core tags that make coarse distinctions among content items at relatively higher levels of abstraction, while also triggering other Perception models to predict additional perception tags at lower levels of abstraction. A Dense Classifier identifies sub-content items at various levels of abstraction, and facilitates the iterative generation of additional dense tags across integrated Perceptions. Class-specific thresholds are generated with respect to individual classes of each Perception to address the inherent sampling bias that results from the varying number and quality of training samples (across different classes of content items) available to train each Perception.
Public/Granted literature
- US20200250223A1 Contextually Generated Perceptions Public/Granted day:2020-08-06
Information query