Black-box optimization using neural networks
Abstract:
Methods and systems for determining an optimized setting for one or more process parameters of a machine learning training process are described. One of the methods includes processing a current network input using a recurrent neural network in accordance with first values of the network parameters to obtain a current network output, obtaining a measure of the performance of the machine learning training process with an updated setting defined by the current network output, and generating a new network input that includes (i) the updated setting defined by the current network output and (ii) the measure of the performance of the training process with the updated setting defined by the current network output.
Public/Granted literature
Information query
Patent Agency Ranking
0/0