Method for detecting tumor by image analysis, device using method, and non-transitory storage medium
Abstract:
A method for detecting a tumor from images which are required to be shrunken in resolution obtains one or more first images. Then, the method segments or divides the detection images into a number of detection image blocks according to an input size of training data of a convolutional neural network architecture, before segmenting, each of the plurality of detection image blocks comprising coordinate values. The detection image blocks are input into a preset tumor detection model to generate image blocks of a result of the detection images. The method merges the image blocks into a single image according to the coordinate values of each detection image block. Colors of normal areas, abnormal areas, and overlapping areas of the abnormal areas are all different. The method generates a final detection according to color depths in the image. A tumor detection device and a non-transitory storage medium are provided.
Information query
Patent Agency Ranking
0/0