Method and data processing system for making machine learning model more resistent to adversarial examples
Abstract:
A method and data processing system for making a machine learning model more resistant to adversarial examples are provided. In the method, an input for a machine learning model is provided. A randomly generated mask is added to the input to produce a modified input. The modified input is provided to the machine learning model. The randomly generated mask negates the effect of a perturbation added to the input for causing the input to be an adversarial example. The method may be implemented using the data processing system.
Information query
Patent Agency Ranking
0/0