Localization and mapping methods using vast imagery and sensory data collected from land and air vehicles
Abstract:
A system for training simultaneous localization and mapping (SLAM) models, including a camera, mounted in a vehicle and in communication with an image server via a cellular connection, that captures images labeled with a geographic position system location and a timestamp, and uploads them to an image server, a storage device that stores geographical maps and images, and indexes the images geographically with reference to the geographical maps, an images server that receives uploaded images, labels the uploaded images with a GPS location and a timestamp, and stores the uploaded images on the storage device, and a training server that trains a SLAM model using images labeled with a GPS location and a timestamp, wherein the SLAM model (i) receives an image as input and predicts the image location as output, and/or (ii) receives an image having error as input and predicts a local correction for the image as output.
Information query
Patent Agency Ranking
0/0