Method and system for prediction of correct discrete sensor data based on temporal uncertainty
Abstract:
This disclosure relates generally to a method and system for prediction of correct discrete sensor data, thus enabling continuous flow of data even when a discrete sensor fails. The activities of humans/subjects, housed in a smart environment is continuously monitored by plurality of non-intrusive discrete sensors embedded in living infrastructure. The collected discrete sensor data is usually sparse and largely unbalanced, wherein most of the discrete sensor data is ‘No’ and comparatively only a few samples of ‘Yes’, hence making prediction very challenging. The proposed prediction techniques based on introduction of temporal uncertainty is performed in several stages which includes pre-processing of received discrete sensor data, introduction of temporal uncertainty techniques followed by prediction based on neural network techniques of learning pattern using historical data.
Information query
Patent Agency Ranking
0/0