Smart basket recommendations for online selections
Abstract:
A system including one or more processors and one or more non-transitory computer-readable media storing computing instructions configured to run on the one or more processors and perform tracking respective duration data for each respective item of items in a catalog based on purchase histories; measuring a reorder rate for the each respective item within one or more first periods of time; generating a Weibull distribution for the each respective item; training a machine learning model based on previous orders by the users; generating, using the machine learning model, as trained, a ranked list of one or more first items for a user of the users, a respective predicted quantity for each of the one or more first items, and an average basket size for the user; receiving a request for recommended items from the user using a user interface; and sending the ranked list of the one or more first items to be displayed on the user interface. Other embodiments are disclosed.
Public/Granted literature
Information query
Patent Agency Ranking
0/0