Classification of sparsely labeled text documents while preserving semantics
Abstract:
A method of training a neural network includes receiving a text corpus containing a labeled portion and an unlabeled portion, extracting local n-gram features and a sequence of the local n-gram features from the text corpus, processing the text corpus, using convolutional layers, according to the local n-gram features to determine capsule parameters of capsules configured to preserve the sequence of the local n-gram features, performing a forward-oriented dynamic routing between the capsules using the capsule parameters to extract global characteristics of the text corpus, and processing the text corpus according to the global characteristics using a long short-term memory layer to extract global sequential text dependencies from the text corpus, wherein parameters of the neural network are updated according to the local n-gram features, the capsule parameters, global characteristics, and global sequential text dependencies.
Information query
Patent Agency Ranking
0/0