Trustworthiness of artificial intelligence models in presence of anomalous data
Abstract:
Methods, systems, and computer program products for improving trustworthiness of artificial intelligence models in presence of anomalous data are provided herein. A method includes obtaining a machine learning model and a set of training data; determining one or more anomalous data points in said set of training data; for a given one of said anomalous data points, identifying attributes that decrease confidence with respect to at least one output of said machine learning model; determining that a root cause of said decreased confidence corresponds to one of: a class imbalance issue related to said at least one attribute, a confused class issue related to said at least one attribute, a low density issue related to said at least one attribute, and an adversarial issue related to said at least one attribute; and performing step(s) to improve said confidence based at least in part on said determined root cause.
Information query
Patent Agency Ranking
0/0