Constraining actions for reinforcement learning under safety requirements
Abstract:
A computer-implemented method, computer program product, and system are provided for deep reinforcement learning to control a subject device. The method includes training, by a processor, a neural network to receive state information of a target of the subject device as an input and provide action information for the target as an output. The method further includes inputting, by the processor, current state information of the target into the neural network to obtain current action information for the target. The method also includes correcting, by the processor, the current action information minimally to obtain corrected action information that meets a set of constraints. The method additionally includes performing an action by the subject device based on the corrected action information for the target to obtain a reward from the target.
Information query
Patent Agency Ranking
0/0