Offline agent using reinforcement learning to speedup trajectory planning for autonomous vehicles
Abstract:
In one embodiment, a system generates a plurality of driving scenarios to train a reinforcement learning (RL) agent and replays each of the driving scenarios to train the RL agent by: applying a RL algorithm to an initial state of a driving scenario to determine a number of control actions from a number of discretized control/action options for the ADV to advance to a number of trajectory states which are based on a number of discretized trajectory state options, determining a reward prediction by the RL algorithm for each of the controls/actions, determining a judgment score for the trajectory states, and updating the RL agent based on the judgment score.
Information query
Patent Agency Ranking
0/0