Generating control settings for a chemical reactor
Abstract:
Techniques regarding autonomously controlling one or more chemical reactors using generative machine learning models are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a memory that can store computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise a model component that can build a generative machine learning model based on training data regarding a past chemical reactor operation. The generative machine learning model can generate a recommended chemical reactor control setting for experimental discovery of a polymer.
Information query
Patent Agency Ranking
0/0