Clustering device, method and program
Abstract:
Clustering can be performed using a self-expression matrix in which noise is suppressed. A self-expression matrix is calculated that minimizes an objective function that is for obtaining, from among matrices included in a predetermined matrix set, a self-expression matrix whose elements are linear weights when data points in a data set are expressed by linear combinations of points, the objective function being represented by a term for obtaining the residual between data points in the data set and data points expressed by linear combinations of points using the self-expression matrix, a first regularization term that is multiplied by a predetermined weight and is for reducing linear weights of the data points that have a large Euclidean norm in the self-expression matrix, and a second regularization term for the self-expression matrix. A similarity matrix defined by the calculated self-expression matrix is then calculated. Then a clustering result is obtained by clustering the data set based on the similarity matrix.
Public/Granted literature
Information query
Patent Agency Ranking
0/0