Method and device for compressing a neural network model for machine translation and storage medium
Abstract:
A method for compressing a neural network model includes: obtaining a first trained teacher model and a second trained teacher model based on N training samples, N being a positive integer greater than 1; for each of the N training samples, determining a first guide component of the first teacher model and a second guide component of the second teacher model respectively, determining a sub optimization target corresponding to the training sample and configured to optimize a student model according to the first guide component and the second guide component, and determining a joint optimization target based on each of the N training samples and a sub optimization target corresponding to the training sample; and training the student model based on the joint optimization target.
Information query
Patent Agency Ranking
0/0