System and method to determine the authenticity of a seal
Abstract:
In one aspect, a computerized method for anti-counterfeiting solution using a machine learning (ML) model includes the step of providing a pre-defined set of feature detection rules, a pre-defined set of edge detection rules, a pre-defined threshold percentage, an original seal, an original fingerprint of the original seal, and a pre-trained fingerprint identification model. The pre-trained fingerprint identification model is trained by a specified ML algorithm using one or more digital images of the original seal. With a digital camera of a scanning device, the method scans a seal whose authenticity is to be determined. The seal is used to secure a transportation container. The method uses the pre-defined set of feature detection rules to detect and extract an extracted feature image at a specified position on the seal. The method breaks down the extracted feature image of the seal into a ‘kn’ number of sub-images by forming a ‘k’ rows x ‘n’ columns of a grid of the extracted feature image. The method implements the pre-defined set of edge detection rules to extract an edge structure of at least one object in each of the ‘kn’ number of sub-images. The method generates a set of unique fingerprints by specified steps. The method includes generating a unique fingerprint corresponding to a unique number or a feature based on each extracted edge structure. For the set of unique fingerprints, the method generates a match percentage for the set of unique fingerprints using the pre-trained fingerprint identification model. The match percentage corresponds to a matching proportion between each unique fingerprint generated for the seal being verified and the original fingerprint of the original seal on which the pre-trained fingerprint identification model is trained.
Public/Granted literature
Information query
Patent Agency Ranking
0/0