Hyperparameter tuning in a database environment
Abstract:
Embodiments of the present disclosure describe systems, methods, and computer program products for executing and tuning a machine learning operation within a database. An example method can include receiving a data query referencing an input data set of a database, executing a plurality of machine learning operations to generate, in view of the input data set, a plurality of output data sets each having a respective accuracy value, wherein each of the plurality of machine learning operations is executed by a processing device according to one of a plurality of unique sets of hyperparameters, selecting a first output data set of the plurality of output data sets in view of the accuracy values, and returning the first output data set in response to the data query.
Information query
Patent Agency Ranking
0/0