Predicting recurrence and overall survival using radiomic features correlated with PD-L1 expression in early stage non-small cell lung cancer (ES-NSCLC)
Abstract:
Embodiments include controlling a processor to perform operations, the operations comprising accessing a digitized image of a region of tissue (ROT) demonstrating cancerous pathology; extracting a set of radiomic features from the digitized image, where the set of radiomic features are positively correlated with programmed death-ligand 1 (PD-L1) expression; providing the set of radiomic features to a machine learning classifier; receiving, from the machine learning classifier, a probability that the region of tissue will experience cancer recurrence, where the machine learning classifier computes the probability based, at least in part, on the set of radiomic features; generating a classification of the region of tissue as likely to experience recurrence or non-recurrence based, at least in part, on the probability; and displaying the classification and at least one of the probability, the set of radiomic features, or the digitized image.
Information query
Patent Agency Ranking
0/0