Learning of policy for selection of associative topic in dialog system
Abstract:
A computer-implemented method for learning a policy for selection of an associative topic, which can be used in a dialog system, is described. The method includes obtaining a policy base that indicates a topic transition from a source topic to a destination topic and a short-term reward for the topic transition, by analyzing data from a corpus. The short-term reward may be defined as probability of associating a positive response. The method also includes calculating an expected long-term reward for the topic transition using the short-term reward for the topic transition with taking into account a discounted reward for a subsequent topic transition. The method further includes generating a policy using the policy base and the expected long-term reward for the topic transition. The policy indicates selection of the destination topic for the source topic as an associative topic for a current topic.
Information query
Patent Agency Ranking
0/0