System, method and article of manufacture for synchronization-free transmittal of neuron values in a hardware artificial neural networks
Abstract:
Computations in Artificial neural networks (ANNs) are accomplished using simple processing units, called neurons, with data embodied by the connections between neurons, called synapses, and by the strength of these connections, the synaptic weights. Crossbar arrays may be used to represent one layer of the ANN with Non-Volatile Memory (NVM) elements at each crosspoint, where the conductance of the NVM elements may be used to encode the synaptic weights, and a highly parallel current summation on the array achieves a weighted sum operation that is representative of the values of the output neurons. A method is outlined to transfer such neuron values from the outputs of one array to the inputs of a second array with no need for global clock synchronization, irrespective of the distances between the arrays, and to use such values at the next array, and/or to convert such values into digital bits at the next array.
Information query
Patent Agency Ranking
0/0