Systems and methods of contrastive point completion with fine-to-coarse refinement
Abstract:
An electronic apparatus performs a method of recovering a complete and dense point cloud from a partial point cloud. The method includes: constructing a sparse but complete point cloud from the partial point cloud through a contrastive teacher-student neural network; and transforming the sparse but complete point cloud to the complete and dense point cloud. In some embodiments, the contrastive teacher-student neural network has a dual network structure comprising a teacher network and a student network both sharing the same architecture. The teacher network is a point cloud self-reconstruction network, and the student network is a point cloud completion network.
Information query
Patent Agency Ranking
0/0