Soft error-mitigating semiconductor design system and associated methods
Abstract:
A soft error-mitigating semiconductor design system and associated methods that tailor circuit design steps to mitigate corruption of data in storage elements (e.g., flip flops) due to Single Events Effects (SEEs). Required storage elements are automatically mapped to triplicated redundant nodes controlled by a voting element that enforces majority-voting logic for fault-free output (i.e., Triple Modular Redundancy (TMR)). Storage elements are also optimally positioned for placement in keeping with SEE-tolerant spacing constraints. Additionally, clock delay insertion (employing either a single global clock or clock triplication) in the TMR specification may introduce useful skew that protects against glitch propagation through the designed device. The resultant layout generated from the TMR configuration may relax constraints imposed on register transfer level (RTL) engineers to make rad-hard designs, as automation introduces TMR storage registers, memory element spacing, and clock delay/triplication with minimal designer input.
Information query
Patent Agency Ranking
0/0