Non-intrusive load monitoring using machine learning
Abstract:
Embodiments implement non-intrusive load monitoring using machine learning. A trained convolutional neural network (CNN) can be stored, where the CNN includes a plurality of layers, and the CNN is trained to predict disaggregated target device energy usage data from within source location energy usage data based on training data including labeled energy usage data from a plurality of source locations. Input data can be received including energy usage data at a source location over a period of time. Disaggregated target device energy usage can be predicted, using the trained CNN, based on the input data.
Public/Granted literature
Information query
Patent Agency Ranking
0/0