Dynamic feature selection for model generation
Abstract:
Embodiments generate a model of demand of a product that includes an optimized feature set. Embodiments receive sales history for the product and receive a set of relevant features for the product and designate a subset of the relevant features as mandatory features. From the sales history, embodiments form a training dataset and a validation dataset and randomly select from the set of relevant features one or more optional features. Embodiments include the selected optional features with the mandatory features to create a feature test set. Embodiments train an algorithm using the training dataset and the feature test set to generate a trained algorithm and calculate an early stopping metric using the trained algorithm and the validation dataset. When the early stopping metric is below a predefined threshold, the feature test set is the optimized feature set.
Public/Granted literature
Information query
Patent Agency Ranking
0/0