High-speed wavelength-scale spatial light modulators with two- dimensional tunable microcavity arrays
Abstract:
A reflective spatial light modulator (SLM) made of an electro-optic material in a one-sided Fabry-Perot resonator can provide phase and/or amplitude modulation with fine spatial resolution at speeds over a Gigahertz. The light is confined laterally within the electro-optic material/resonator layer stack with microlenses, index perturbations, or by patterning the layer stack into a two-dimensional (2D) array of vertically oriented micropillars. Alternatively, a photonic crystal guided mode resonator can vertically and laterally confine the resonant mode. In phase-only modulation mode, each SLM pixel can produce a π phase shift under a bias voltage below 10 V, while maintaining nearly constant reflection amplitude. This high-speed SLM can be used in a wide range of new applications, from fully tunable metasurfaces to optical computing accelerators, high-speed interconnects, true 2D phased array beam steering, beam forming, or quantum computing with cold atom arrays.
Information query
Patent Agency Ranking
0/0