Tuning simulated data for optimized neural network activation
Abstract:
Techniques described herein are directed to comparing, using a machine-trained model, neural network activations associated with data representing a simulated environment and activations associated with data representing real environment to determine whether the simulated environment is causes similar responses by the neural network, e.g., a detector. If the simulated environment and the real environment do not activate the same way (e.g., the variation between neural network activations of real and simulated data meets or exceeds a threshold), techniques described herein are directed to modifying parameters of the simulated environment to generate a modified simulated environment that more closely resembles the real environment.
Public/Granted literature
Information query
Patent Agency Ranking
0/0