Lossless exponent and lossy mantissa weight compression for training deep neural networks
Abstract:
Systems, methods, and apparatuses are provided for compressing values. A plurality of parameters may be obtained from a memory, each parameter comprising a floating-point number that is used in a relationship between artificial neurons or nodes in a model. A mantissa value and an exponent value may be extracted from each floating-point number to generate a set of mantissa values and a set of exponent values. The set of mantissa values may be compressed to generate a mantissa lookup table (LUT) and a plurality of mantissa LUT index values. The set of exponent values may be encoded to generate an exponent LUT and a plurality of exponent LUT index values. The mantissa LUT, mantissa LUT index values, exponent LUT, and exponent LUT index values may be provided to one or more processing entities to train the model.
Information query
Patent Agency Ranking
0/0