Hybrid floating point representation for deep learning acceleration
Abstract:
In an embodiment, a method includes configuring a specialized circuit for floating point computations using numbers represented by a hybrid format, wherein the hybrid format includes a first format and a second format. In the embodiment, the method includes operating the further configured specialized circuit to store an approximation of a numeric value in the first format during a forward pass for training a deep learning network. In the embodiment, the method includes operating the further configured specialized circuit to store an approximation of a second numeric value in the second format during a backward pass for training the deep learning network.
Information query
Patent Agency Ranking
0/0